

Wireless Extreme Fast Charging for Electric Trucks (WXFC-Trucks)

Principal Investigator, Michael Masquelier

Wireless Advanced Vehicle Electrification
June 04, 2019

CONTACT: MICHAEL MASQUELIER, CEO michael@waveipt.com 773.962.1135

WXFC-Trucks | Overview

Timeline

Project start date: August 2018

• Project end date: June 2022

Percent complete: 35%

Budget

Total project funding: \$9,838,240

DOE share: \$4,292,137

— Contractor Share: \$5,546,103

• Funding for FY 2019: \$1,249,762

Funding for FY 2020: In-Progress

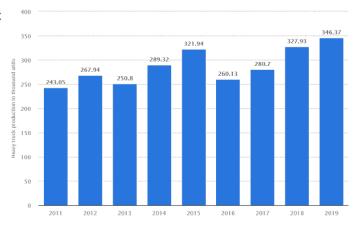
Barriers

- Meeting the window of time to deliver a medium voltage feed to the charge site
- Obtaining the necessary permits for the project
- Acclimating drivers to electric vehicles requires changing driver habits (or other personnel) for plugging in the vehicles and aligning the trucks over the wireless chargers

Partners

- WAVE, Inc. Project Lead
- Cummins Inc. (Cummins)
- Schneider Electric (Schneider)
- Utah State University (USU)
- Port of Los Angeles (POLA)
- Total Transportation Services Inc. (TTSI)
- Southern California Edison (SCE)

WXFC-Trucks | Relevance

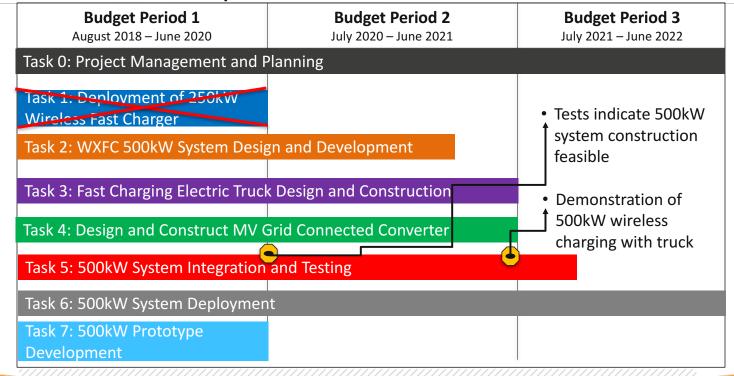

Impact

- The California Air Resource Board shows that 41% of all greenhouse gas emissions (429.5 MMTCO₂e in California in 2016) is due to transportation
- 7.8% of all greenhouse gas emissions were from heavy duty trucks
- Enabler for this major pollution transportation sector to become all-electric
 - Fully charged vehicles in roughly 20-minutes means minimal down time to refuel and minimal impact on existing route planning
 - No cables means hands-free instant start of charging with no special personnel required
- Overcoming the charging time obstacle leads to a 3x to 4x reduction in actual fuel costs for vehicle operation
- Accelerate manufacturing and deployment of electric heavy-duty trucks

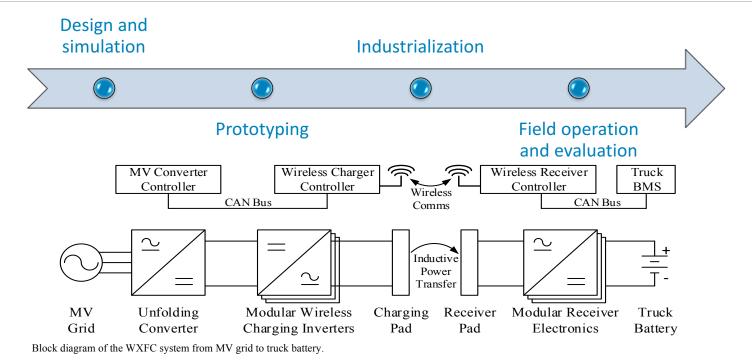
Objectives

- Wireless extreme fast charging
- MV grid to DC converter
- Extreme fast charging capable electric truck

Heavy-Duty Truck Production in the US from 2011-2019



WXFC-Trucks | Relevance


FOA Objective	WXFC-Truck Expected Outcomes	
Recharge battery in half the	 New system with 500 kW wireless charging 	
time		
Develop and verify vehicles equipped with XFC, charger installation and demonstration	 W-XFC system deployment and operation at POLA with two 	
	Class-8 trucks customized to support XFC.	
	 Deployment in two stages. First early 500kW prototype charging and second final deployment at 500 kW 	
	 Combined, over two years of evaluation data and best practices 	
System design and grid infrastructure impact	Direct MV 3-phase AC to DC single stage conversion solution to reduce grid integration costs, system size and weight, and improve efficiency.	
Catalyze manufacturing and adoption of electric trucks	 Project goal targets key barrier to market adoption 	
	 Over two years of system hardware demonstration and evaluation are performed at one of the world's highest volume shipping ports at a critical time with zero emission requirements in place by 2035 	

WXFC-Trucks | Milestones

WXFC-Trucks | Approach

WXFC-Trucks | Approach

500kW MV Grid Connected AC/DC Supply Approach

- 3-phase unfolder with a soft DC bus two-level output
- Develop the 3-phase unfolder to achieve direct MV grid connection with switches commutating at the line frequency
- Design the series stacked isolated DC/DC converters to achieve the voltage step down function from MV naturally with near unity conversion ratio to obtain high efficiency

Extreme Fast Charging Capable Electric Truck Approach

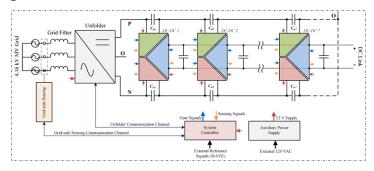
- Investigate appropriate battery chemistry (LTO cells or NMC cells)
- Design custom thermal management for the cell to facilitate charging at 3C
- Select appropriate battery pack capacity and cell chemistry to integrate with electric powertrain applicable to Class 8 drayage applications

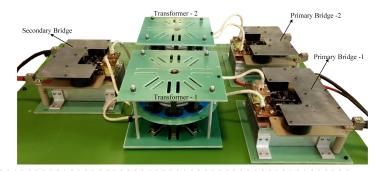
WXFC-Trucks | Approach

500kW Wireless Charging System Approach

- Leverage deployment experience with 250kW charger
- Use deployment experience to develop 500kW Prototype
- WAVE has experience integrating with different OEMs

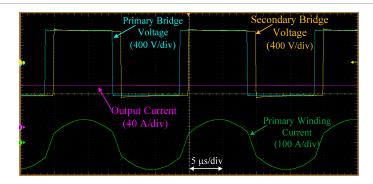




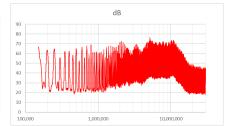


560 kW MV Grid Connected AC/DC Supply Progress

- Developed one of the seven 85 kW DC-DC converter modules and sub-components tested up to full power operation
- Developed EMI measurement setup to evaluate CM & DM conducted emissions
- Designed the 560 kW, 4.16 kV 3-phase Unfolder and started construction
- Proposed a control strategy for the seriesstacking of seven DC-DC modules

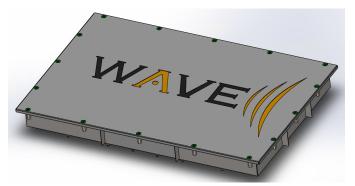


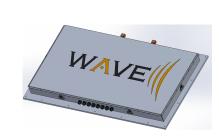

DC-DC Power Loop Test Results:


- 85 kW power test on Dual Active Bridge configuration performed
- Test validated the design of transformer and H-bridge under rated power electrical stress condition
- 98.6 % efficiency is measured at 85 kW output

EMI Testing Setup and Initial Results:

- Fabricated two FCC Part 15 50 mH LISNs
- Developed Signal splitter to distinguish common-mode and differential-mode emissions
- EMI test setup with LISNs, signal separator, and spectrum analyzer complete and initial results have been received





WAVE System Design Process

- WAVE has continued work on the extreme fast charger at 500kW with a focus on magnetics.
- Modular design approach will allow WAVE to deploy 2 X 250kW assemblies
- WAVE to meet weight, cooling requirements, and magnetic performance

WAVE 250kW Ground Side Pad

WAVE 500kW Rectifier

WAVE 250kW Receiver Pad

WAVE System Design Process

- WAVE adopting current assembly and manufacturing techniques with 500kW design.
- Serviceability and multi-configurations have been implemented into the equipment.
- Product structure has been completed

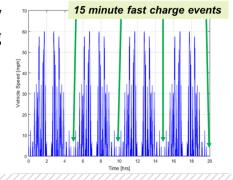
WAVE System Design Process

- Wide- bandgap SiC devices: Potential to improve XFC design and efficiency features
- Next-generation SiC switches:
 - Lower loss
 - High-frequency operation capability
 - Reduced thermal management
- Handful of device manufacturers explored (Cree, Rohm etc.)
- Lab characterization with WPT operating conditions required
- Passive SiC modules are being evaluated in lab with a 250kW charger

SiC- control adapter board

- System modifications carried out for smoother transition into SiC MOSFETS
- 35% reduced loss projected: Evaluation is underway
- SiC MOSFETs, driver parts are ordered
- SiC-control adapter board designed and sent for fabrication

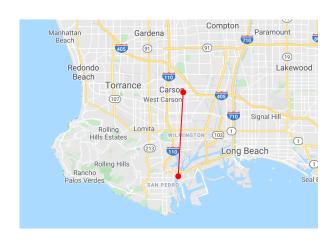
Truck requirements

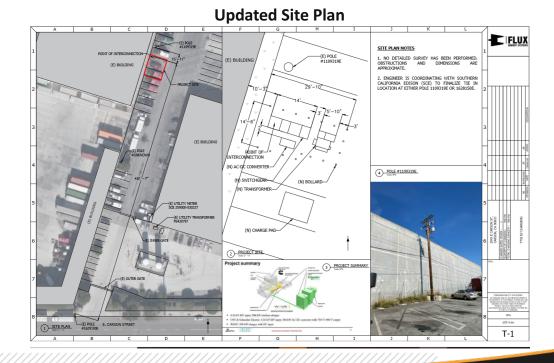

- Class 8 day cab based on TTSI's requirements
- Battery selected which supports 3C charging

Key vehicle metrics	Target	As designed
Vehicle speed on 6% grade @ 82k lb GCVW	> 30 mph	32 mph
Charge power (20 minutes)	495 kW	495 kW
Tractor weight	≤ 22.5k lb	23.0k lb
Vehicle range	> 45 miles	58 miles
Work day duty cycle	20 hours 160 miles	20 hours 200 miles

Truck status

- Design complete for Kenworth T680 day cab battery electric truck integrated with WAVE secondary charging plates and rectifier
- Truck #1 build is 90% complete
- Truck commissioning to begin in June
- Stand alone battery test impacted by COVID-19
 - Expected completion now July

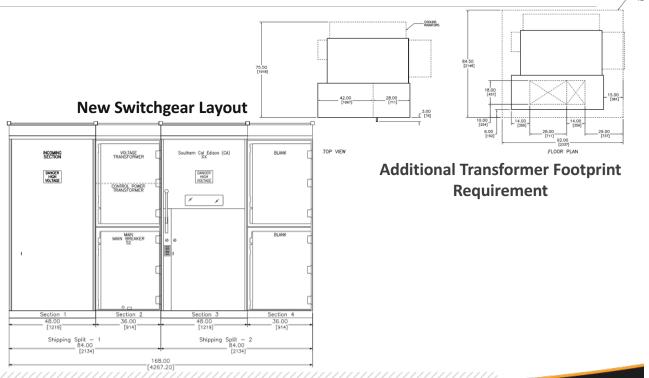




Update

Pivot to Carson Location

- Change in primary service voltage
- Exploring SCE Charge Ready Program eligibility



Modifications to plan

- Change to ULSE Meter/Main Switchgear
 - 4160v to 12,000v
 - LADWP to SCE interconnect requirements
- Addition of a step-down pad mounted transformer in lieu of changing power electronics design
 - Advantage in time savings
 - Additional cost

WXFC-Trucks | Response to Previous Reviewer Comments

Approach:

Reviewer: "The approach addresses both the technical aspects of the charger design and the practical aspects of its deployment."

Response: The project runs the full spectrum from concept, simulation, design, prototype, vehicle integration, full product deployment, & real-world goods movement in CA.

Technical Accomplishments & Progress:

Reviewer: "After the first year of the 3+ year program, only 10% of the full effort is complete."

Response: Now estimate 35% complete for overall project. 1st truck ready in Q3, wireless charger design completed, charger site plan close to completion. On track for successful field demonstration.

Collaboration & Coordination Across Project Team:

Reviewer: "This project has the right partners in the right areas to make this a successful project; the team just needs to execute."

Response: Strong, frequent, structured communication exists amongst all team members (WAVE, Cummins, USU, Schneider Electric, TTSI, SCE), which has led to increased progress.

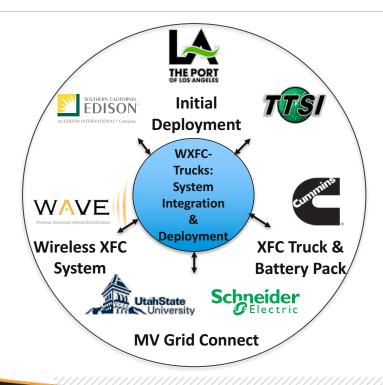
Proposed Future Research:

Reviewer: "If successful in the future work, this will pave the way to new applications of electrification in this space. Good execution of this future work is critical."

Response: This effort is happening in parallel with other wireless charging projects at Port of LA, including Class-8 yard trucks and 52-ton container handlers.

Relevance:

Reviewer: "This is the first project that goes from charger design to site deployment, thereby demonstrating the practical reality of this technology leading to its adoption."
Response: This effort has already spawned discussions with TTSI about additional 500kW chargers and E-Trucks at additional sites.


Resources:

Reviewer: "Given the level of funds for Year 1 and percent complete of 10%, funds for the first budget period seem high, however for the overall project they seem appropriate."

Response: Resources have been consistently added from each team. Also, project scope is very broad and there is much front-end loaded effort to realize the final end demonstration.

WXFC-Trucks | Collaboration & Coordination with Other Institutions

- The Port of Los Angeles Deployment Partner
- Southern California Edison Deployment Partner
- Total Transportation Services Inc. Port Trucks Partner
- Cummins Truck Integration and Electric Drivetrain Partner
- Utah State University Research Partner
- Schneider Electric Electrical Supplier, Industrialization Partner

WXFC-Trucks | Remaining Challenges & Barriers

MV-Grid Converter:

- Optimized control strategy for the DC-DC modules series stacking control
- Confirm converter layout, design and communication satisfy the MV related high voltage isolation requirements from UL field evaluation
- 500 kW full power test of the AC-DC converter

WAVE System Design & Process:

- Effective cooling to reduce hot spotting and thermal runaway scenarios
- Ideal ferrite placement to avoid saturation
- · Manufacturing process for actively cooled wire
- · Control leakage to surrounding environment

Truck Design:

• Ensuring adequate thermal management of battery and WAVE components during charging under range of environmental conditions

WXFC-Trucks | Proposed Future Research

Future Research Opportunities:

- Battery: To improve long-term commercial viability, industry needs to develop a low-cost, higher energy density 3C charge (continuous) capable battery
- Grid Feed: Optimize MV-to-DC Converter for various electric utility MV voltages available.
- Thermal: Minimization of heat generated and novel thermal materials.
- Operator Cost: Addition of stationary storage to offset demand and TOU charges.
- System: Overall improved system-level efficiency.

Any proposed future work is subject to change based on funding levels

WXFC-Trucks | Summary

This project brings together all three critical components needed to solve the barrier for adoption of electric heavy-duty vehicles:

- · High-efficiency MV grid supply to lower energy costs and reduce total footprint of equipment
- High-efficiency, high-energy density wireless extreme fast charger
- An all-electric vehicle capable of high C-rate charging and equipped to handle a wireless charging system

This project's overall system approach is driving research that will result in a highly costeffective solution that will make adoption of all-electric fleets not only viable, but very compelling.

Critical success factors include:

- Development of a 500kW wireless charging system
- Development of a Class-8 truck powertrain with a battery pack capable of reliably and repeatedly charging at a greater than 3C-rate up to 500kW
- Development of a modular direct MV 3-phase AC to DC power converter
- Achieve system MV grid to vehicle battery efficiency of 92%

